skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tanner, Evan P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Helicopters used for aerial wildlife surveys are expensive, dangerous and time consuming. Drones and thermal infrared cameras can detect wildlife, though the ability to detect individuals is dependent on weather conditions. While we have a good understanding of local weather conditions, we do not have a broad-scale assessment of ambient temperature to plan drone wildlife surveys. Climate change will affect our ability to conduct thermal surveys in the future. Our objective was to determine optimal annual and daily time periods to conduct surveys. We present a case study in Texas, (United States of America [USA]) where we acquired and compared average monthly temperature data from 1990 to 2019, hourly temperature data from 2010 to 2019 and projected monthly temperature data from 2021 to 2040 to identify areas where surveys would detect a commonly studied ungulate (white-tailed deer [ Odocoileus virginianus ]) during sunny or cloudy conditions. Mean temperatures increased when comparing the 1990–2019 to 2010–2019 periods. Mean temperatures above the maximum ambient temperature in which white-tailed deer can be detected increased in 72, 10, 10, and 24 of the 254 Texas counties in June, July, August, and September, respectively. Future climate projections indicate that temperatures above the maximum ambient temperature in which white-tailed deer can be detected will increase in 32, 12, 15, and 47 counties in June, July, August, and September, respectively when comparing 2010–2019 with 2021–2040. This analysis can assist planning, and scheduling thermal drone wildlife surveys across the year and combined with daily data can be efficient to plan drone flights. 
    more » « less
  2. ABSTRACT MotivationSNAPSHOT USA is an annual, multicontributor camera trap survey of mammals across the United States. The growing SNAPSHOT USA dataset is intended for tracking the spatial and temporal responses of mammal populations to changes in land use, land cover and climate. These data will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, as well as the impacts of species interactions on daily activity patterns. Main Types of Variables ContainedSNAPSHOT USA 2019–2023 contains 987,979 records of camera trap image sequence data and 9694 records of camera trap deployment metadata. Spatial Location and GrainData were collected across the United States of America in all 50 states, 12 ecoregions and many ecosystems. Time Period and GrainData were collected between 1st August and 29th December each year from 2019 to 2023. Major Taxa and Level of MeasurementThe dataset includes a wide range of taxa but is primarily focused on medium to large mammals. Software FormatSNAPSHOT USA 2019–2023 comprises two .csv files. The original data can be found within the SNAPSHOT USA Initiative in the Wildlife Insights platform. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026